Để làm quen với dạng bài tập xác đinh số lần gnuyên phân của mỗi tế bào trong nhóm. Ví dụ cụ thể như sau:
Ba tế bào A, B và C có tổng số lần nguyên phân là 10 và đã tạo ra 36 tế bào con. Biết số lần nguyên phân của tế bào B gấp đôi số lần nguyên phân của tế bào A. Tìm số lần nguyên phân và số tế bào con được tạo ra từ mỗi tế bào A, B và C?
Để giải bài tập trên ta cần vận dụng công thức tính số tế bào con tạo thành từ một hay một số tế bào qua k lần phân bào nguyên nghiễm (nguyên phân) và bằng tư duy toán học để giải bài tập sinh học trên.
Gọi: $x_1, x_2, x_3$ lần lược là số lần nguyên phân của tế bào A, B, C.
Theo đề:
- $x_1 + x_2 + x_3 = 10$.
- $x_2 = 2x_1$
- $x_2 = 2x_1$
=> $x_3 = 10 - x_1 - x_2 = 10 - x_1 - 2x_1 = 10 - 3x_1$
Một tế bào qua $k$ lần nhân đôi liên tiếp sẽ tạo ra $2^k$ tế bào con.
=> Tổng số tế bào con được tạo ra từ 3 tế bào A, B, C là $ S = 2^{x_1}+2^{2x_1} + 2^{10-3x_1} = 36$.
Đây là phương trình hai ẩn, để giải nhanh chúng ta chỉ cần lập bảng như sau:
Kết quả phù hợp là $x_1 = 2$, $x_2 = x_3 = 4$.
Số tế bào con được tạo ra từ:
- Tế bào A = $2^2$ = 4.
- Tế bào B = tế bào C = $2^4$ = 16